Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cells ; 11(9)2022 04 20.
Article in English | MEDLINE | ID: covidwho-1792800

ABSTRACT

Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signaling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1ß (IL-1ß) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1ß in THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB), and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signaling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo.


Subject(s)
COVID-19 , Cannabidiol , Cannabinoids , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Cytokine Release Syndrome , Cytokines/metabolism , Dronabinol/pharmacology , Humans , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/metabolism , TYK2 Kinase/pharmacology
2.
Preprints.org ; 2022.
Article in English | EuropePMC | ID: covidwho-1786438

ABSTRACT

Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases;however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signalling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signalling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1β(IL-1β) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC, significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1βin THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB) and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α(TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn, attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signalling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo.

3.
Cell Death Discov ; 8(1): 110, 2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1740435

ABSTRACT

COVID-19 is caused by the SARS-CoV-2 virus, which enters target cells via interactions with ACE2 and TMPRSS2. Here, we show AKT serine/threonine kinase-dependent epigenetic control of ACE2 and TMPRSS2 expression by high-cannabidiol (CBD) cannabis extracts and their individual components. CBD alone and extracts #1, #5, #7, and #129 downregulated ACE2 and TMPRSS2 in lung fibroblast WI-38 cells through AKT-mediated inhibition. miR-200c-3p and let-7a-5p were two contributing miRNAs in CBD-mediated suppression of ACE2 and TMPRSS2. CBD and terpene PTWT2.2 profoundly inhibited ACE2 and TMPRSS2 expression, both individually and in combination. Extracts #1, #5, #7, and #169 suppressed COX2 expression and remarkably attenuated TNFα/IFNγ-triggered induction of proinflammatory factors IL-6 and IL-8 by AKT pathway. The most abundant molecules present in extracts #1 and #7 modulated the expression of COX2, IL-6, and IL-8 both individually and in combination. These results reveal that high-CBD cannabis extracts attenuated ACE2 and TMPRSS2 expression and the induction of inflammatory mediators COX2, IL-6, and IL-8 via the AKT pathway, highlighting their potential anti-COVID-19 features.

4.
Front Immunol ; 11: 613613, 2020.
Article in English | MEDLINE | ID: covidwho-1084148

ABSTRACT

Inflammasomes are cytoplasmic inflammatory signaling protein complexes that detect microbial materials, sterile inflammatory insults, and certain host-derived elements. Inflammasomes, once activated, promote caspase-1-mediated maturation and secretion of pro-inflammatory cytokines, interleukin (IL)-1ß and IL-18, leading to pyroptosis. Current advances in inflammasome research support their involvement in the development of chronic inflammatory disorders in contrast to their role in regulating innate immunity. Cannabis (marijuana) is a natural product obtained from the Cannabis sativa plant, and pharmacologically active ingredients of the plant are referred to as cannabinoids. Cannabinoids and cannabis extracts have recently emerged as promising novel drugs for chronic medical conditions. Growing evidence indicates the potent anti-inflammatory potential of cannabinoids, especially Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and synthetic cannabinoids; however, the mechanisms remain unclear. Several attempts have been made to decipher the role of cannabinoids in modulating inflammasome signaling in the etiology of chronic inflammatory diseases. In this review, we discuss recently published evidence on the effect of cannabinoids on inflammasome signaling. We also discuss the contribution of various cannabinoids in human diseases concerning inflammasome regulation. Lastly, in the milieu of coronavirus disease-2019 (COVID-19) pandemic, we confer available evidence linking inflammasome activation to the pathophysiology of COVID-19 suggesting overall, the importance of cannabinoids as possible drugs to target inflammasome activation in or to support the treatment of a variety of human disorders including COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cannabinoids/pharmacology , Inflammasomes/drug effects , Inflammasomes/immunology , Humans , SARS-CoV-2
5.
Aging (Albany NY) ; 13(2): 1571-1590, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-1040203

ABSTRACT

The main aspects of severe COVID-19 disease pathogenesis include hyper-induction of proinflammatory cytokines, also known as 'cytokine storm', that precedes acute respiratory distress syndrome (ARDS) and often leads to death. COVID-19 patients often suffer from lung fibrosis, a serious and untreatable condition. There remains no effective treatment for these complications. Out of all cytokines, TNFα and IL-6 play crucial roles in cytokine storm pathogenesis and are likely responsible for the escalation in disease severity. These cytokines also partake in the molecular pathogenesis of fibrosis. Therefore, new approaches are urgently needed, that can efficiently and swiftly downregulate TNFα, IL-6, and the inflammatory cytokine cascade, in order to curb inflammation and prevent fibrosis, and lead to disease remission. Cannabis sativa has been proposed to modulate gene expression and inflammation and is under investigation for several potential therapeutic applications against autoinflammatory diseases and cancer. Here, we hypothesized that the extracts of novel C. sativa cultivars may be used to downregulate the expression of pro-inflammatory cytokines and pathways involved in inflammation and fibrosis. Initially, to analyze the anti-inflammatory effects of novel C. sativa cultivars, we used a well-established full thickness human 3D skin artificial EpiDermFTTM tissue model, whereby tissues were exposed to UV to induce inflammation and then treated with extracts of seven new cannabis cultivars. We noted that out of seven studied extracts of novel C. sativa cultivars, three (#4, #8 and #14) were the most effective, causing profound and concerted down-regulation of COX2, TNFα, IL-6, CCL2, and other cytokines and pathways related to inflammation and fibrosis. These data were further confirmed in the WI-38 lung fibroblast cell line model. Most importantly, one of the tested extracts had no effect at all, and one exerted effect that may be deleterious, signifying that careful cannabis cultivar selection must be based on thorough pre-clinical studies. The observed pronounced inhibition of TNFα and IL-6 is the most important finding, because these molecules are currently considered to be the main targets in COVID-19 cytokine storm and ARDS pathogenesis. Novel anti-TNFα and anti-IL-6 cannabis extracts can be useful additions to the current anti-inflammatory regimens to treat COVID-19, as well as various rheumatological diseases and conditions, and 'inflammaging' - the inflammatory underpinning of aging and frailty.


Subject(s)
COVID-19 , Cannabis , Cytokine Release Syndrome , Interleukin-6/antagonists & inhibitors , Plant Extracts/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , COVID-19/complications , Cannabinoids/pharmacology , Cell Line , Fibroblasts/drug effects , Humans , Inflammation/virology , SARS-CoV-2 , Skin/drug effects , Tissue Culture Techniques
6.
Aging (Albany NY) ; 12(22): 22425-22444, 2020 11 22.
Article in English | MEDLINE | ID: covidwho-969889

ABSTRACT

With the current COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for new therapies and prevention strategies that can help curtail disease spread and reduce mortality. The inhibition of viral entry and thus spread is a plausible therapeutic avenue. SARS-CoV-2 uses receptor-mediated entry into a human host via the angiotensin-converting enzyme 2 (ACE2), which is expressed in lung tissue as well as the oral and nasal mucosa, kidney, testes and gastrointestinal tract. The modulation of ACE2 levels in these gateway tissues may be an effective strategy for decreasing disease susceptibility. Cannabis sativa, especially those high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been found to alter gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. However, its effects on ACE2 expression remain unknown. Working under a Health Canada research license, we developed over 800 new C. sativa cultivars and hypothesized that high-CBD C. sativa extracts may be used to down-regulate ACE2 expression in target COVID-19 tissues. Using artificial 3D human models of oral, airway and intestinal tissues, we identified 13 high-CBD C. sativa extracts that decrease ACE2 protein levels. Some C. sativa extracts down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV-2 entry into host cells. While our most effective extracts require further large-scale validation, our study is important for future analyses of the effects of medical cannabis on COVID-19. The extracts of our most successful novel high-CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the prevention/treatment of COVID-19 as an adjunct therapy.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19/prevention & control , Cannabis/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/virology , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Computer Simulation , Gene Expression Regulation/drug effects , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology , Models, Anatomic , Mouth Mucosa/drug effects , Mouth Mucosa/metabolism , Mouth Mucosa/virology , Pandemics/prevention & control , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL